If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2=443
We move all terms to the left:
x^2+2-(443)=0
We add all the numbers together, and all the variables
x^2-441=0
a = 1; b = 0; c = -441;
Δ = b2-4ac
Δ = 02-4·1·(-441)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*1}=\frac{-42}{2} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*1}=\frac{42}{2} =21 $
| | | 16^2m=4^3m+4 | | -6(n+5)=66 | | -16·2x+16·6-3·18x+3·3=-4·4x-4·17 | | 7Y(5x2)=31 | | t3-3t2+3t-1=0 | | 12-6x=1,5 | | 3+5×(2x-1)=-12 | | x2-10+25=0 | | -4(z-4)=20 | | 15/6=20/r | | t2+8t+16=0 | | 16(-2x+6)-3(18x-3)=4(-4x-17) | | (2s^2-1)^2=225 | | 16(-2x+6)-3(18x-3)=4(-4x-17)-16·2x+16·6-3·18x+3·3=-4·4x-4·17 | | X+(1/3x)=49 | | (2x+1)2+(x+1)=6x+47 | | -5(y+3)=20 | | 12(x+5)-(5x+3)=-2(13x-12) | | 35x=0 | | 12(x+5)–(5x+3)=–2(13x12) | | 4^(x-1)=0.5 | | v-1/3=43/5 | | 7+3x×6=66 | | x2+x+0,25=0 | | 16(–2x+6)–3(18x–3)=4(–4x–17)–16·2x+16·6–3·18x+3·3=–4·4x–4·17 | | X2+x+1/4=0 | | 25x2-10x=0 | | Y^2+16y+4=0 | | 3x-32=100 | | 10x+3-6x-17=6x+15 | | 8x2-22x-21=0 |